Search results for "Brownian bridge"

showing 5 items of 5 documents

Hard-wall interactions in soft matter systems: Exact numerical treatment

2011

An algorithm for handling hard-wall interactions in simulations of driven diffusive particle motion is proposed. It exploits an exact expression for the one-dimensional transition probability in the presence of a hard (reflecting) wall and therefore is numerically exact in the sense that it does not introduce any additional approximation beyond the usual discretization procedures. Studying two standard situations from soft matter systems, its performance is compared to the heuristic approaches used in the literature.

Fractional Brownian motionFrictionComputer simulationDiscretizationStochastic processHeuristic (computer science)Models TheoreticalBrownian bridgeDiffusionPhysical PhenomenaStable processReflected Brownian motionStatistical physicsMathematicsPhysical Review E
researchProduct

On first exit times and their means for Brownian bridges

2017

For a Brownian bridge from $0$ to $y$ we prove that the mean of the first exit time from interval $(-h,h), \,\, h>0,$ behaves as $O(h^2)$ when $h \downarrow 0.$ Similar behavior is seen to hold also for the 3-dimensional Bessel bridge. For Brownian bridge and 3-dimensional Bessel bridge this mean of the first exit time has a puzzling representation in terms of the Kolmogorov distribution. The result regarding the Brownian bridge is applied to prove in detail an estimate needed by Walsh to determine the convergence of the binomial tree scheme for European options.

Statistics and ProbabilityBessel processGeneral Mathematics010102 general mathematicsMathematical analysisProbability (math.PR)Brownian bridge01 natural sciencesBridge (interpersonal)010104 statistics & probabilitysymbols.namesakeDistribution (mathematics)Diffusion processMathematics::ProbabilitysymbolsFOS: MathematicsBinomial options pricing model0101 mathematicsStatistics Probability and UncertaintyMathematics - ProbabilityBessel functionBrownian motionMathematics
researchProduct

De Rham–Hodge–Kodaira Operator on Loop Groups

1997

AbstractWe consider a based loop group Le(G) over a compact Lie groupG, endowed with its pinned Wiener measureν(the law of the Brownian bridge onG) and we shall calculate the Ricci curvature for differentialn-forms over Le(G). A type of Bochner–Weitzenböck formula for general differentialn-forms (or Shigekawa identity) will be established.

Loop (topology)Pure mathematicsIdentity (mathematics)Operator (physics)Loop groupMathematical analysisMathematics::Differential GeometryBrownian bridgeAnalysisRicci curvatureMathematicsJournal of Functional Analysis
researchProduct

BROWNIAN DYNAMICS SIMULATIONS WITHOUT GAUSSIAN RANDOM NUMBERS

1991

We point out that in a Brownian dynamics simulation it is justified to use arbitrary distribution functions of random numbers if the moments exhibit the correct limiting behavior prescribed by the Fokker-Planck equation. Our argument is supported by a simple analytical consideration and some numerical examples: We simulate the Wiener process, the Ornstein-Uhlenbeck process and the diffusion in a Φ4 potential, using both Gaussian and uniform random numbers. In these examples, the rate of convergence of the mean first exit time is found to be nearly identical for both types of random numbers.

Stochastic processMathematical analysisGeneral Physics and AstronomyStatistical and Nonlinear PhysicsOrnstein–Uhlenbeck processBrownian excursionBrownian bridgeComputer Science Applicationssymbols.namesakeComputational Theory and MathematicsWiener processReflected Brownian motionStochastic simulationsymbolsStatistical physicsGaussian processMathematical PhysicsMathematicsInternational Journal of Modern Physics C
researchProduct

Self-normalized and randomly centered spectral estimates

1996

We review some limit theory for the periodogram and for integrated versions of it and explain the use of random normalizing and centering techniques.

PeriodogramSample autocorrelationSelf normalizedStatistical physicsBrownian bridgeLimit theoryMathematics
researchProduct